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In the present paper an efficient hybrid compact-WENO scheme is proposed to
obtain high resolution in shock-turbulence interaction problems. The algorithm is
based on a fifth-order compact upwind algorithm in conservation form to solve for
the smooth part of the flow field, which is coupled with a high-resolution weighted
essentially nonoscillatory (WENO) scheme to capture the discontinuities. The deriva-
tion of the compact scheme is discussed in detail, and a stability study of the full
discretization is included. The performance of the numerical algorithm has been as-
sessed by performing preliminary simulations on benchmark problems, such as the
interaction of a shock wave with entropy and vortical disturbances. The algorithm
here developed is proven to have better resolution properties than standard WENO
schemes and hybrid compact-ENO schemes as well, at a lower computational cost.
In addition, the application to more realistic shock-turbulence interaction problems
is discussed. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Direct numerical simulations of turbulence and large-eddy simulations require the use of
highly accurate numerical schemes, which must be capable of resolving a very broad range
of length scales that are often orders of magnitude apart. For this purpose compact methods
have been developed which guarantee spectral-like resolution properties, are cheaper to
use than spectral and pseudospectral schemes, and are easier to handle, especially when
nontrivial geometries are involved. The interest in compact schemes for turbulence and
aeroacoustics simulations seems to have started from the pioneering work of Lele [28],
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even though compact approximations have been used previously by other authors (see,
for example, Refs. [9, 25]). Lele developed compact approximations for first and second
derivatives in the framework of a finite-difference approach and extensively applied the
method of Fourier analysis (discussed in great detail in Ref. [45]) to analyze the errors
involved with difference approximations. Indeed, the order of the truncation error of a
numerical scheme provides information on the asymptotic convergence rate to the exact
solution, but it does not provide any information on the spectrum of the truncation error. As
a result of this type of analysis, the dispersion-relation-preserving (DRP) finite-difference
schemes have been developed [42]. The basic idea of those schemes is to optimize the
coefficients of the compact scheme to improve their resolution properties (i.e., their behavior
in Fourier space) in order to resolve with high accuracy waves whose wavelength is small
with respect to the computational grid (i.e., which are resolved with a few number of points
per wavelength). The schemes presented in Refs. [28, 42] are intrinsically nondissipative,
as central differences are used to approximate the derivatives. However, a small amount
of numerical dissipation is often necessary in practical applications in order to damp out
oscillations issuing from initial and boundary conditions, as well as from aliasing error. For
this purpose compact upwind schemes have been developed [1, 44, 49], which drop the
restriction of symmetric coefficients, thus allowing the scheme to be upwind even with a
centered stencil. The introduction of upwinding introduces an amount of dissipation which
is limited to high wavenumbers and can be adjusted by a careful design of the scheme.
Recently, finite-volume compact schemes have also been attempted [14, 24]. The latter
authors have demonstrated that a conservative formulation, in addition to having inherent
advantages for the computation of compressible flows [21], also provides better resolution
properties with respect to a nonconservative approach.

It is well-known that for problems involving discontinuities, fixed-stencil explicit and
compact approximations (of second order or higher) necessarily produce oscillations whose
amplitude does not decrease as the grid is refined (the latter phenomenon is referred to as
the Gibbs phenomenon). Such oscillations are usually unacceptable if an accurate solu-
tion is required, such as for direct simulation of shock-turbulence interaction. Several ap-
proaches have been proposed to overcome this difficulty. An original idea was proposed by
Cockburn and Shu [8], who employed a TVB limiter to stabilize compact (central and up-
wind) schemes. The latter approach was proven to be able to yield oscillation-free solutions
when applied the the Burgers equation. More recently, weighted essentially nonoscillatory
(WENO) schemes have been developed as a follow-up of the classical essentially nonoscil-
latory (ENO) schemes, originally developed by Harten et al. [20]. The formulation of the
WENO schemes has been discussed in detail in several papers in recent years [22, 30, 39],
and such schemes have been used successfully in applications [17, 33]. WENO schemes
have the advantage over the ENO ones to yield higher order accuracy for the same stencil
size, and at the same time to cure the well-known order degeneracy phenomenon of the
ENO schemes related to the free stencil adaptation in smooth regions [36, 38]. However,
those shock-capturing schemes are usually not optimal for computing turbulent flows or
for aeraocoustics applications, because they exhibit poor resolution qualities compared to
linear compact schemes. For this reason there have been a number of efforts in recent years
to try to overcome the deficiency of conventional shock-capturing schemes in computing
shock-turbulence interaction problems, where small scales can be seriously damped by the
numerical dissipation which is necessary to properly resolve shock waves. An interesting
attempt is the one undertaken by Adams and Shariff [1]. Those authors have developed
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hybrid schemes that rely on the coupling of a nonconservative compact upwind scheme
with a shock-capturing ENO scheme that is turned on around discontinuities. Two types
of optimized compact schemes were developed in [1] which exhibit different levels of nu-
merical dissipation, and which both require the inversion of a pentadiagonal matrix. The
coupling between the compact and the ENO scheme was efficiently performed by pre-
computing the node-based flux derivatives by ENO at critical cells. The results presented in
Ref. [1] clearly indicate that hybrid schemes combine the advantages of compact schemes in
smooth regions with a sharp representation of discontinuities and thus are good candidates
for efficiently computing shock-turbulence interaction problems. The same algorithm has
been successfully applied for the direct numerical simulation of a turbulent compression
ramp flow [2]. A different approach was devised by Deng and Maekawa [11]; those au-
thors developed nonlinear compact schemes based on an adaptive mechanism of selection
among different compact stencils based on the smoothness properties of the function to in-
terpolate. Deng and Zhang [12] developed an algorithm whereby the resolution properties
of WENO schemes are improved by introducing compact approximations for pointwise
derivatives rather than explicit ones. Recently there have been attempts to improve the
resolution properties of WENO schemes; some of them [46, 47] are based on the attempt
to relax the requirements on the formal order of accuracy of the scheme to achieve bet-
ter resolution properties at high frequencies. Some others are based on the substitution of
polynomial-explicit reconstructions with compact approximations [23].

In the present paper we follow the same basic approach proposed in Ref. [1] to derive a
hybrid compact-WENO scheme. However, our effort has been to improve some features of
the scheme. First, a conservative approach for the compact scheme is developed rather than
a nonconservative one; this feature makes coupling with the shock-capturing scheme easier
than in the original formulation and is shown to cause a lower level of numerical oscillations
than is found in Ref. [1]. Second, the compact algorithm is based on the inversion of a
tridiagonal matrix rather than a pentadiagonal one, which makes the scheme more efficient
from a computational standpoint, while retaining (at least) the same resolution properties
as the schemes developed in Ref. [1]. Finally, a weighted ENO scheme is used to resolve
discontinuities rather than an ENO one. Indeed it is shown that the overall performance of
hybrid schemes in computing shock-turbulence interaction problems is critically affected
by the order of accuracy of the shock-capturing scheme that is employed. WENO schemes
therefore represent a better candidate than ENO schemes, as they yield better accuracy
properties virtually at the same price. Evidence of the nice features of the hybrid compact-
WENO scheme is given in the paper by performing a number of benchmark simulations,
which indeed confirm a performance of the present formulation of hybrid scheme better than
the original formulation of Ref. [1]. A more realistic application is also presented, consisting
of the computation of a three-dimensional shock-turbulence interaction problem.

The paper is organized as follows. In Section 2 a conservative compact upwind scheme is
formulated, and a detailed discussion of the implementation of proper boundary conditions
and a stability analysis of the fully discretized scheme is presented; a convergence study for
smooth solutions will also be presented. In Section 3 the formulation of the WENO algorithm
is briefly discussed, with an emphasis on the coupling with the compact scheme, and a
computational study on the linear advection equation with discontinuous initial conditions
is included. In Section 4 the algorithm is extended to deal with the full nonlinear Euler
equations of gasdynamics. Finally, in Section 5 the hybrid scheme is applied to a number
of benchmark test cases, as well as to a shock-turbulence interaction problem.



84 SERGIO PIROZZOLI

2. FORMULATION OF A CONSERVATIVE COMPACT UPWIND

FINITE-DIFFERENCE SCHEME

In the present section we describe the formulation of a class of compact upwind finite-
difference schemes in the framework of a conservative approach. Such a scheme is intended
to be applied in the smooth regions of the flow field, and in order to achieve a shock-
capturing capability, it is coupled with a weighted ENO scheme, as explained in the next
section. Compact schemes have several advantages over their noncompact counterparts:
(i) for the same number of points in the stencil they yield better accuracy and resolution
properties [1, 28]; (ii) the operation count varies linearly with the number of grid points, as
in the explicit case, as compact schemes involve the inversion of narrowly banded matrices;
and (iii) the implementation of boundary conditions is made easier because fewer boundary
points must be handled. These properties have been discussed in detail in Ref. [28] for central
compact difference schemes. In the present work we describe the derivation of conservative
compact upwind schemes, in a fashion similar to what has been done for central schemes in
[14] and [24]. A conservative approximation of the derivatives that appear in conservation
equations is necessary when discontinuities in the flow field occur, because then the Lax–
Wendroff theorem holds [29], which guarantees that the latter propagate at the correct speed.
Of course, the proper tracking of flow discontinuities is guaranteed by selectively applying
the weighted ENO algorithm close to the shocks themeselves; however, we argue that using
a conservative approximation throughout the computational domain is more sound and also
allows a better coupling with the weighted ENO algorithm. This claim is substantiated in
the Results section.

The problem under consideration is the formulation of a conservative approximation to
the derivative of a scalar variable v(x) starting from its pointwise values (i.e., in a finite-
difference approach), and exploiting compact approximants. Let the pointwise values of
v(x) be given on a set of grid points

vi = v(xi ), i = 1, 2, . . . , N , (1)

where N is the number of grid points, and let h be the grid spacing, which is assumed
to be uniform. The problem is to determine a numerical flux function ṽi+1/2 such that the
difference of the fluxes at the intermediate nodes i + 1/2 and i − 1/2 yields a kth order
approximation to the derivative v′(xi ):

1

h

(
ṽi+1/2 − ṽi−1/2

) = v′(xi ) + O(hk), i = 1, . . . , N . (2)

It can be shown [20] that this problem is equivalent to an interpolation problem whereby
the reconstructions of a scalar variable u(x) at the intermediate nodes ũi+1/2 are evaluated
starting from its cell-average values

ūi = 1

h

∫ xi+1/2

xi−1/2

u(x) dx,

with the following identification:

ṽi+1/2 = ũi+1/2, vi = ūi . (3)
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In particular, it can be shown that in order for (2) to be satisfied, it is sufficient to have

ũi+1/2 = ui+1/2 + O(hk).

Let us look for a compact (implicit) representation of the reconstruction of u(x) around
the intermediate node i + 1/2,

L2∑
l=−L1

�l ũi+1/2+l =
M2∑

m=−M1

amūi+m, (4)

or else

L2∑
l=−L1

�l ṽi+1/2+l =
M2∑

m=−M1

amvi+m . (5)

Assuming that the function u can be expanded in Taylor series up to order K around xi+1/2,

u(x) =
K−1∑
n=0

u(n)
i+1/2

(
x − xi+1/2

)n

n!
+ O(hK ),

and recalling that

ūi+m = Ui+m+1/2 − Ui+m−1/2

h
,

where U (x) is the primitive function of u(x),

U (x) =
K−1∑
n=0

u(n)
i+1/2

(
x − xi+1/2

)n+1

(n + 1)!
+ O(hK+1),

we thus obtain

ūi+m =
K−1∑
n=0

u(n)
i+1/2

1

(n + 1)!
[mn+1 − (m − 1)n+1]hn + O(hK+1).

Inserting the Taylor expansions of u and ū into Eq. (4), and matching the coefficients of
like powers of h, requiring the approximation to be kth order accurate (with k ≤ K ) one
easily arrives at

(n + 1)

L2∑
l=−L1

�l l
n −

M2∑
m=−M1

am[mn+1 − (m − 1)n+1] = 0, n = 0, . . . , k − 1. (6)

The coefficients for the compact upwind scheme can then be obtained by solving the
system of Eqs. (6) with respect to the coefficients �l(L1 + L2 + 1 unknowns) and am(M1 +
M2 + 1 unknowns). Note that such coefficients are not independent (for example one can
set �L2 = 1), and as a consequence there are only L1 + L2 + M1 + M2 + 1 independent
unknowns. If the required order of accuracy is k ≤ L1 + L2 + M1 + M2 + 1 the system
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(6) is solvable, and L1 + L2 + M1 + M2 + 1 − k free coefficients are left. In the present
work we are interested in compact upwind interpolations with a narrow stencil so as to
use efficient matrix inversion algorithms, such as the Thomas algorithm. In particular, we
consider the case L1 = L2 = M1 = M2 = 1, which only implies the inversion of a tridiagonal
matrix. A two-parameter class of third-order compact upwind schemes can then be obtained
by requiring k = 3 and choosing �0 and �−1 as free coefficients,

�1 = 1; a−1 = 1

3
+ �−1

3
− �0

6
, a0 = −7

6
+ 5�−1

6
+ 5�0

6
, a1 = 11

6
− �−1

6
+ �0

3
;

in the same way a one-parameter family of fourth-order schemes is obtained by requiring
k = 4 and taking �0 as a free coefficient,

�−1 = �0 − 3, �1 = 1; a−1 = −2

3
+ �0

6
, a0 = −11

3
+ 5�0

3
, a1 = 7

3
+ �0

6
.

The only fifth-order compact upwind scheme in the class is obtained for k = 5, yielding the
following interpolation scheme:

3ũi−1/2 + 6ũi+1/2 + ũi+3/2 = 1

3
ūi−1 + 19

3
ūi + 10

3
ūi+1. (7)

Recalling the identification (3) it is finally possible to revert to a conservative finite-
difference formulation, and write down for the reconstruction at the intermediate nodes
the approximation

3ṽi−1/2 + 6ṽi+1/2 + ṽi+3/2 = 1

3
vi−1 + 19

3
vi + 10

3
vi+1, (8)

which, when inserted into Eq. (2), yields a fifth-order approximation to the first derivative
of v. It is important to point out that Eq. (8) is also suitable for practical implementation of
the scheme, since the matrix to invert is diagonally dominant, which is a sufficient condition
for the Thomas algorithm to be stable. It must also be pointed out that the numerical flux
function defined by Eq. (8) is not a local function of vi due to the inversion of a tridiagonal
matrix. Nevertheless it can be shown [5] that the Lax–Wendroff theorem still holds for such
an approximation.

In the same way, explicit approximations can be constructed by choosing L1 = L2 = 0
and M1 = M2 = 2, which yields the explicit fifth-order, upwind-biased scheme

ṽi+1/2 = 1

30
vi−2 − 13

60
vi−1 + 47

60
vi + 9

20
vi+1 − 1

20
vi+2, (9)

or M1 = M2 = 3, which yields the seventh-order-accurate scheme

ṽi+1/2 = − 1

140
vi−3 + 5

84
vi−2 − 101

420
vi−1 + 319

420
vi + 107

210
vi+1 − 19

210
vi+2 + 1

105
vi+3.

(10)

The latter formulas are important, as the fifth-order and the seventh-order WENO schemes
later discussed reduce to (9) and (10) in smooth regions.
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2.1. Resolution Properties

In order to investigate the resolution properties of finite-difference approximations it is
customary to consider the linear advection equation [45]

vt + avx = 0, a > 0, (11)

which we discretize by means of a conservative approximation:

dvi

dt
+ a

1

h

(
ṽi+1/2 − ṽi−1/2

) = 0. (12)

A particular solution of (11) is given by a monochromatic wave of wavenumber k,

v(x, t) = eik(x−at),

which on a uniform grid becomes

vi (t) = eik̂(i−a/ht), (13)

where k̂ = kh is the scaled wavenumber [28], which is directly related to the number of grid
points per wavelength (n p)

k̂ = 2�

n p
; (14)

note that the highest resolvable wavenumber corresponds to n p = 2, which implies that
it is sufficient for the sake of the analysis to consider the range of scaled wavenumbers
0 ≤ k̂ ≤ �. If the semidiscretization (5) + (12) is used instead of the exact solution, one
obtains

vi (t) = eik̂(i− a
h

z(k̂)

k̂
t)

= e
a
h Im[Z(k̂)]t eik̂(i− a

h
Re[Z(k̂)]

k̂
t)
, (15)

where

Z(k̂) = 2 sin k̂/2

∑M2
m=−M1

ameik̂m

∑L2
l=−L1

�l eik̂(l+1/2)
. (16)

The transfer function Z(k̂) therefore completely describes the behavior of the numerical
scheme for sinusoidal initial conditions of a given scaled wavenumber k̂. It is also evident,
from a comparison with the exact solution, which propagates at a phase speed a and does not
decay with time, that the discrete approximation causes a dispersion error, as the numerical
approximation propagates at the phase speed aRe(Z)/k̂, where Z(k̂) is generally different
from k̂, and damps out with time at a rate ea/hIm[Z(k̂)]t . It is therefore necessary for the
stability of the semidiscrete algorithm that Im[Z(k̂)] ≤ 0 (of course the opposite holds for
left-running waves, for which a < 0 and therefore for stability one must have Im[Z(k̂)] ≥ 0).
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FIG. 1. Dispersion and dissipation properties for different approximation schemes. ——, Fifth-order compact
upwind scheme; – – –, seventh-order WENO; - - -, fifth-order WENO; – · – · –, sixth-order Padé; - · - · -, fourth-order
Padé; · · · ·, spectral (Z(k̂) = k̂).

The transfer function for the fifth-order compact upwind algorithm here proposed (Eq. 8)
is plotted in Fig. 1, together with the transfer function associated with the explicit fifth- and
seventh-order upwind schemes (Eqs. (9) and (10)). In the same figure we also report the
transfer functions associated with the classical fourth-order, three-point-stencil Padé scheme
and for the sixth-order, five-point-stencil compact algorithm reported by Lele [9, 28], which
are given respectively by

ZPadé-4(k̂) = 3 sin k̂

2 + cos k̂
,

ZPadé-6(k̂) = 28 sin k̂ + sin(2k̂)

18 + 12 cos k̂
,

For reference purposes we also report the transfer function of a spectral scheme, which is
simply Z(k̂) = k̂. The figure shows that the proposed scheme yields much better resolution
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properties than the explicit weighted ENO schemes, and than the Padé schemes as well, and
propagates at the correct speed waves with k̂ ≤ 2 (i.e., is able to capture sinusoidal waves
with three points per wavelegth). Figure 1 also shows that the dissipation error is confined
to high wavenumbers, where the compact upwind scheme exhibits a larger dissipation than
the other ones. This is not necessarily a bad feature, as in the range of high wavenumbers
the waves propagate at an incorrect speed, and it can be desirable to damp them as much
as possible. This feature is also desirable for Euler flow calculations, where the molecular
viscosity is zero, and some numerical viscosity is often necessary to prevent aliasing errors
from growing without bound.

In the present work no optimization of the compact scheme in the wavenumber space
has been attempted, as done in Refs. [1, 14, 42, 49], among the others. However, it has
been found that the selected fifth-order compact scheme is nearly optimal for its resolution
properties among the family of compact schemes here developed. Finally, we observe that
the propagation characteristics of the scheme here proposed are intermediate between the
two compact schemes proposed by Adams and Shariff [1] (which those authors refer to as
CUHD, which stands for compact upwind high dissipation, and CULD, low dissipation);
in particular the dispersion characteristics of the proposed scheme are closer to CULD,
while the diffusion characteristics are closer to CUHD. However, those schemes require the
inversion of a pentadiagonal matrix rather than a tridiagonal one.

2.2. Boundary Closures

The formulation of appropriate boundary closures is crucial for the formulation of a
compact scheme that works properly [28], mostly because of the global nature of the
reconstruction step, which involves all the nodes at a time. Indeed, boundary closures
critically impact the stability characteristics of the scheme, and a stability study based
on the decomposition into Fourier harmonics may lead to wrong conclusions. Rather, a
stability analysis of the full discretization becomes necessary. We propose the following
(fourth order) explicit boundary closures for the left and right boundary, respectively:

ṽ1/2 = 1

4
v0 + 13

12
v1 − 5

12
v2 + 1

12
v3,

(17)

ṽN+1/2 = 25

12
vN − 23

12
vN−1 + 13

12
vN−2 − 1

4
vN−3.

It has been shown [18] that this is sufficient to maintain fifth-order accuracy for the global
discretization. Note that the latter boundary closures are consistent with the physical nature
of the problem under investigation (Eq. (11)), which corresponds to the propagation of right-
running disturbances. Indeed, the value of ṽ at the right boundary (i.e., the intermediate
node xN+1/2) is extrapolated from the interior, whereas the evaluation of the numerical flux
at the left boundary at the intermediate node x1/2 requires the knowledge of the solution in
an additional ghost node x0, which serves to enforce a physical boundary condition related
to the amplitude of an incoming disturbance.

For the purpose of determining the stability characteristics of the compact upwind scheme
here developed (Eq. (8)), supplemented with the boundary closures (17), let us introduce a
compact matrix notation. First, the reconstruction stage is implicitly described by

Aṽ = Bv + b, (18)
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where v = (v1, v2, . . . , vN )T , ṽ = (ṽ1/2, ṽ3/2, . . . , ṽN+1/2)
T , b = (1/4v0, 0, . . . , 0)T , and

A =




1
3 6 1

3 6 1
. . .

. . .
. . .

3 6 1
1




, B =




13
12 − 5

12
1

12

19
3

10
3

1
3

19
3

10
3

. . .
. . .

. . .

1
3

19
3

10
3

− 1
4

13
12 − 23

12
25
12




. (19)

Second, the conservative approximation for the first derivative is written as

v′ = 1

h
Cṽ, (20)

with

C =

−1 1

. . .
. . .

−1 1


. (21)

The following semidiscrete approximation to (11) therefore holds

vt = −a

h
CA−1(Bv + b). (22)

It is then clear that the stability characteristics of the semidiscrete approximation depend
upon the matrix S = −CA−1B. In particular, a necessary condition for stability is that all
eigenvalues of S have negative real part and therefore correspond to exponentially damped
modes. In order to analyze the stability properties of the scheme (12) + (8) + (17) we then
have numerically computed the eigenvalues of the matrix S for several values of the number
of grid points. The results of the analysis are reported in Fig. 2, where we also report the

FIG. 2. Eigenvalue spectra for the compact upwind scheme. �, N = 50; �, N = 100; �, N = 200; �, N =
400; ——, periodic.
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spectrum of S for the case of periodic boundary conditions. In the latter case the matrix S
is circulant, and as such its eigenvalues are given by [45]

�m = −iZ(2�m/N ), m = 1, . . . , N , (23)

with Z given in Eq. (16). The figure clearly shows that the selected scheme supplemented
with appropriate boundary conditions is linearly stable regardless of the number of grid
points. In addition, the figure also shows that the effect of the boundary closures (17) is to
stabilize the overall algorithm; indeed, the eigenvalue spectrum in the presence of boundary
closures entirely lies inside the region bounded by the eigenvalue spectrum for periodic
boundary conditions.

2.3. Stability Analysis of the Full Discretization

In the present work we have employed a method of lines approach, whereby the time
integration is performed by means of a four-stage, fourth-order, non-TVD Runge–Kutta
scheme. For a system of ODEs

dv
dt

=L(v), (24)

the chosen scheme can be written as

v(1) = vn + 1

2

tL(vn),

v(2) = vn + 1

2

tL

(
v(1)

)
,

(25)
v(3) = vn + 
tL

(
v(2)

)
,

vn+1 = 1

3

(−vn + v(1) + 2v(2) + v(3)
) + 1

6

tL

(
v(3)

)
.

The operator L that appears at the right-hand side of Eq. (24) stems from the discretization
of the spatial part of a conservation equation; for example, in the case of Eq. (11) (whose
semidiscretized form is given by Eq. (22)) we can identify L ≡ a/hS, disredarding the
forcing term. The stability analysis for the full discretization of Eq. (11) has been here
carried out exploiting a von Neumann normal mode analysis. Note that such an analysis
is in general not strictly justifyable for the case of nonperiodic boundary conditions, and
one has to revert to more general methods of stability analysis, such as the matrix method
[21]. However, we observe that when the boundary conditions provide a damping for the
spatial discretization operator, a von Neumann analysis is sufficient in practice. It turns out
[45] that for the fourth-order Runge–Kutta time integration scheme the amplitude v̂(k̂) of
a generic Fourier mode whose scaled wavenumber is k̂ at the time step n + 1 is related to
its amplitude at time step n through the relation

v̂n+1(k̂) = g(k̂)v̂n(k̂), (26)

where g(k̂) is called the amplification factor for the fully discrete algorithm, given by

g(k̂) =
[

1 + i� Z + 1

2
(i� Z)2 + 1

6
(i� Z)3 + 1

24
(i� Z)4

]
, (27)
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FIG. 3. Amplification factor of the fully discrete scheme as a function of the scaled wavenumber k̂. ——, Unit
circle; – – –, � = 0.25; - - -, � = 0.75; – · – · –, � = 1.034; - · - · -, � = 1.1.

where � = a
t/h is the Courant number, and Z(k̂) is the transfer function associated
with the spatial discretization operator. The full discretization will therefore prove to be
von Neumann stable provided the condition |g(k̂)| ≤ 1 is satisfied for |k̂| ≤ �. In Fig. 3
we report in a polar plot the distribution of |g(k̂)| for several values of � (note that only
the range 0 ≤ k̂ ≤ � is plotted in the figure because |g| is an even function of k̂). The figure
shows that the stability condition is

� ≤ 1.034. (28)

It is interesting to observe that the price to pay to have better resolution properties is to
have a more limited range of stability with respect to the linear WENO schemes reported
in Eqs. (9) and (10) in their fifth-order (W 5) and the seventh-order (W 7) version. Indeed,
the von Neumann stability analysis of those schemes results in the following stability
ranges:

�W5 ≤ 1.732, �W 7 ≤ 1.689. (29)

2.4. A Convergence Test on Smooth Solutions

In order to numerically test the convergence of the compact scheme here developed we
have performed a series of preliminary simulations whereby we have considered the solution
of the linear advection Eq. (11) with smooth initial conditions and with unit advection speed
(a = 1). In particular, we have considered a computational domain −1 ≤ x ≤ 1 with the
following initial conditions: (a) v(x, 0) = sin(�x); (b) v(x, 0) = sin4(�x). A uniformly
spaced grid has been used with a time step which is varied with the number of grid points
according to � ∝ N−1/4 so as to rule out the time discretization error. The computed results
have been compared to the exact solution at time t = 2. The results of the study are reported
in Fig. 4. In the figure we report the distribution of the L1, L2, and L∞ errors as a function
of the number of grid points. For reference purposes, we also report dashed lines with an
N−5 slope, which is consistent with the formal order of accuracy of the scheme. The figure
shows that the asymptotic convergence rate is achieved for both test cases even on coarse
grids.
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FIG. 4. Convergence study for smooth initial conditions. (a)v(x, 0) = sin(�x); (b)v(x, 0) = sin4(�x). �, L∞
error, �, L2 error; �, L1 error.

3. COUPLING WITH WEIGHTED ENO SCHEMES

The compact upwind scheme described in the previous section has been demonstrated to
converge for smooth solutions provided appropriate boundary closures are given. However,
in the presence of discontinous solutions Gibbs phenomena do occur, which contaminate
the solution and may lead to nonlinear instability. In order to cure this deficiency, lin-
ear algorithms must be replaced with nonlinear ones, which have a shock-capturing ca-
pability. Good examples of such schemes are the so-called total variation diminishing
(TVD) schemes, the essentially nonoscillatory (ENO) schemes, and the more recent we-
ighted essentially nonoscillatory (WENO) schemes, which probably represent the best
compromise between accuracy and computational cost. We now briefly discuss the ba-
sics of the WENO schemes, following the formulation of Jiang and Shu [22] and Shu
[39].
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The basic idea of the WENO interpolation is to introduce a convex linear combination
of low-order polynomial reconstructions that yield a higher order reconstruction in smooth
regions, and with weights chosen so as to favor the reconstruction over smooth stencils rather
than over irregular ones. In the WENO approach the the numerical flux can be expressed as

ṽi+1/2 =
k−1∑
r=0

�r ṽ
(r)
i+1/2, (30)

where the low-order polynomial reconstructions ṽ(r) are obtained as linear combinations of
the point values of function v according to

ṽ
(r)
i+1/2 =

k−1∑
l=0

c(r)
l vi−r+l ,

and the constants c(r)
l are determined from a linear interpolation problem, as discussed in

Section 2. The weights �r satisfy the conditions

�r ≥ 0,

k−1∑
r=0

�r = 1

and are designed to yield (2k − 1)th-order accuracy in the absence of discontinuities, and to
select the smoothest stencil over the other ones. This implies a lower order of accuracy in the
vicinity of shock waves but at the same time prevents the occurrence of Gibbs phenomena.
In particular, Refs. [22, 39] use

�r = dr/(� + �r )
2∑k−1

l=0 dl/(� + �l)2
, (31)

where dr is the ideal weight, �r is a smoothness indicator for the r th stencil, and � is a small
parameter, necessary to avoid divisions by zero. It is possible to show that the ideal weights
dr can be constructed so that a linear combination of k polynomial reconstructions of kth
order yield a (2k − 1)th-order overall reconstruction. A proper definition of the smoothness
indicators is crucial for the scheme to perform correctly; we have employed the smoothness
indicators proposed in Ref. [22], i.e.,

�r =
k−1∑
l=1

h2l+1
∫ xi+1/2

xi−1/2

[
∂ lv(r)

∂	 l

]2

d	. (32)

Numerical values for the coefficients c(r)
l and dr and for the smoothness sensors �r are

provided for k = 2, 3 in Ref. [39], while the data for schemes of higher order (from the
seventh on) are reported in Ref. [4]. It is interesting to observe that the fifth- and the seventh-
order WENO schemes reduce to the linear upwind schemes (9) and (10), respectively, in
smooth regions.

In the framework of a fully conservative formulation it is a simple task to interface the
compact upwind algorithm with the WENO one, turning it on in nonsmooth regions. The
simplest criterion that can be devised, and that has been successfully used by other authors
[1, 31], is based on the evaluation of the absolute value of the difference of the computed
solution in the two adjacent nodes, i.e.,

|vi+1 − vi |. (33)
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When the difference is larger than a threshold value �, the flux function at the intermediate
node i + 1/2 and the two neighboring ones (i − 1/2 and i + 3/2) is computed by means of
the WENO algorithm. Therefore, only the reconstruction stage is affected. More elaborate
switches to locally apply numerical dissipation have recently been proposed in the literature
[16, 50]. These approaches have not been investigated in the present paper and are the subject
on ongoing research. To show how this procedure can work, let us refer to a situation where
the function v to interpolate has a single point of discontinuity between the nodes i and
i + 1, whereas it is sufficiently smooth on both sides of the discontinuity. For example, let
us consider the case k = 3, which yields a fifth-order WENO scheme. It is then easy to show
that the matrices involved in the interpolation (Eq. (18)) are changed as follows:

A =




1
3 6 1

. . .
. . .

. . .

1
1

1
3 6 1

. . .
. . .

. . .

1




,

(34)

B =




13
12 − 5

12
1
12

19
3

10
3

1
3

19
3

10
3

. . .
. . .

. . .

1
21 − 13

42
41
42

2
7

1
3 − 7

6
11
6

1
3

5
6 − 1

6

1
3

19
3

10
3

. . .
. . .

. . .

− 1
4

13
12 − 23

12
25
12




.

Hence, the interpolated values in the nodes (v1/2, . . . , vi+1/2) and (vi+3/2, . . . , vN+1/2) are
independent of each other, and interpolation across the discontinuity is avoided.

In the following, we analyze the performance of weighted ENO schemes of fifth- and
seventh-order, which we refer to as W 5 and W 7, respectively. At the same time, we consider
hybrid schemes constructed by coupling the basic fifth-order compact upwind algorithm
described in Section 2 with the fifth- and seventh-order WENO schemes, and these are
referred to as H5 and H7.

3.1. A Test on the Linear Advection Equation

In order to test the capability of the hybrid compact-WENO algorithm to compute dis-
continuous solutions, we carried out a preliminary study whereby we considered the linear
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FIG. 5. Numerical solution of Harten’s test case with the hybrid scheme H7 (N = 100, � = 0.25). �, Com-
puted solution; ——, exact solution.

advection equation (Eq. (11)) with the discontinuous initial conditions

v(x + 0.5, 0) =




−x sin(3/2�x2), −1 ≤ x < −1/3,

|sin(2�x)|, |x |< 1/3,

2x − 1 − sin(3�x)/6, 1/3 < x < 1,

(35)

and supplemented with periodic boundary conditions at x = ±1. This test case was originally
proposed by Harten et al. [20], and then used by many authors as a simple test to check
the capability of a numerical scheme to handle solutions with flow discontinuities and
smooth regions at the same time. The solution has been computed using a Courant number
� = 0.5 and the solutions are reported at time t = 2, which corresponds to a distance of one
wavelength. The solution obtained with the H7 scheme for N = 100 and � = 0.25 is reported
in Fig. 5, together with the exact solution. From inspection of the figure one can clearly see
that the numerical algorithm develops accurate solutions in the smooth regions and captures
the discontinuities without observable oscillations, causing only a little smearing around
the latter.

It is important to wonder how the computed solution depends upon the number of grid
points, as well as on the numerical parameter �. For this purpose we have shown in Fig. 6
the distribution of the L1 norm of the solution error as a function of the number of grid
points and of �. The figure shows that the error monotonically decreases with the number of
grid points, although at a rate that is slower than in the case of smooth solutions (see Fig. 4).
Indeed, the convergence rate is reduced to N−1 approximately, which is to be expected when
discontinuities are involved. In addition, the figure shows that the error is a monotonically
decreasing function of �. One should then observe that � = 0 corresponds to the W 7 scheme,
while � = 1 (for the present test case) corresponds to using the linear compact upwind
scheme (8) for all the nodes. However, as � is increased, the Gibbs phenomenon starts
to show itself under the form of spurious oscillations around the discontinuities. Such
oscillations are not particularly harmful in the case of the linear advection equation, but
they may affect more seriously the solution in the case of the Euler equations, for example,
in which case nonlinear instabilities are likely to occur. Therefore, although the global error
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FIG. 6. Convergence study for Harten’s test case. �, � = 0; �, � = 0.1; �, � = 0.25; 	, � = 0.5; 
, � = 1.

decreases by allowing the scheme to bias toward a compact scheme, when dealing with
nonlinear systems of equations, one is left with the problem of balancing the accuracy
requirements with the necessity of keeping the computation stable. The choice of a proper
value for � is further discussed in the following.

4. EXTENSION TO THE EULER EQUATIONS OF GAS DYNAMICS

The main focus of the present work is in solving the Euler equations of gas dynamics,
which are written in conservation form as

∂v
∂t

+
d∑

j=1

f j (v)x j = 0, (36)

where v is the vector of conservative variables, f j is the flux vector in the j th coordinate
direction, and d is the space dimension of the problem. The procedure here developed
relies on a local characteristic decomposition of the governing equations that exploits the
hyperbolic character of the Euler system. The Jacobians of the flux vectors are similar to
diagonal matrices, according to

∂f j

∂v
= R jΛ j L j ,

where Λ j is the matrix of the characteristic velocities in the j th direction, and R j and L j

are the matrices of the right and left eigenvectors, respectively. Upwinding is achieved by
splitting Λ j into positive and negative parts, i.e.,

Λ j = Λ+
j + Λ−

j . (37)

This can be done in several ways [21], and for example one can write

(�±
l ) j = 1

2
[(�l) j ± (�∗

l ) j ],
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where

(�∗
l ) j = max

x j

|(�l) j |,

and the maximum is taken over the relevant range of x j involved in the reconstruction. In the
present case, since the reconstructions are inherently global, the maximum is taken over the
entire range x1 ≤ x j ≤ xN j . Exploiting the homogeneity property of the Euler equations,
the splitting (37) induces the (Lax–Friedrichs) flux splitting

f±
j = 1

2
(f j ± R jΛ∗

j L j v), (38)

which has the obvious property f j = f+
j + f−

j . The positive part of the split fluxes f+
j (which

are associated with positive propagation velocities) are then discretized according to the
scalar upwind methodology described in the previous sections component by component,
whereas the negative split fluxes are discretized by means of the analogous upwind formulae
that can be obtained for waves with negative propagation velocities according to trivial
symmetry consideration. A cheaper, even though more dissipative, Lax–Friedrichs flux
splitting is obtained by considering the maximum of the characteristic velocities over all
the characteristic fields,

(�±
l ) j = 1

2
[(�l) j ± � j ],

where

� j = max
l

(�∗
l ) j .

The flux splitting then obtained is

f±
j = 1

2
(f j ± �v), (39)

whereby the evaluation of the eigenvector matrices is avoided. In the following we refer to
the first type of splitting as the low-dissipation Lax–Friedrichs (LDLF), while the second
one is referred to as the high-dissipation Lax–Friedrichs (HDLF).

It is important to point out that for systems of conservation equations there are several
alternatives for defining the smoothness measurement needed to couple the compact and the
WENO algorithms (Eq. (33)). A simple choice is to evaluate the smoothness properties on
the basis of the density field only and apply the WENO algorithm selectively in the regions
of the flow field where

|
i+1 − 
i | > �. (40)

This choice guarantees that both shock waves and contact discontinuities are properly
recognized. Also, several choices are available for computing the smoothness estimators �r

needed to compute the nonlinear weights involved with the WENO algorithm. Consistently,
we have chosen to use smoothness estimators based on the density only, which also allow
a consistent saving in terms of computation times.
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5. APPLICATIONS

In the present section we discuss the application of the hybrid algorithm here developed
for some test cases that have been extensively studied in the literature. In addition, we also
report the results obtained from the simulation of a three-dimensional shock-turbulence
interaction problem. Note that for all the applications, unless otherwise specified, the LDLF
flux splitting of Eq. (38) has been used.

5.1. Inviscid Burgers Equation

To test the efficiency of the schemes discussed in the previous sections on nonlinear
problems with discontinuous solutions, we have considered the one-dimensional inviscid
Burgers equation,

vt +
(

v2

2

)
x

= 0, (41)

which has been solved in the domain −1 ≤ x ≤ 1 with the (smooth) initial conditions

v(x, 0) = 0.3 + 0.7 sin �(x + 1),

and with periodic boundary conditions. The solution to the problem consists of a steepening
wave propagating to the right, which gives rise to a shock wave at a time t∗ = 1/(0.7�).
The numerical solution has been obtained by considering a uniformly spaced grid with N
grid points and a constant time step with � = 0.5. The flux splitting has been performed
according to

f ± = 1

2

(
v2

2
± �v

)
,

where � = maxi=1,N |vi |. The parameter � which controls the switch between the compact
and the WENO scheme has been set to � = 0.1, so as to be compared more precisely with the
results obtained by Adams and Shariff [1]. The computations have been time advanced up to
a time t = 2/�, when a shock wave has already formed. The computed results with various
algorithms and for N = 20 are reported in Fig. 7, together with the analytical solution.
The figure gives evidence of the capability of the four schemes to correctly compute the
discontinous solution without (observable) oscillations. However, the figure shows some
differences in the computed solutions close to the shock, where the schemes W 7 and H7,
which both rely on the seventh-order WENO scheme around the discontinuity, provide a
somewhat less smeared solution with respect to the W 5 and H5 algorithms. In order to better
appreciate the difference between the various schemes, in Fig. 8 we report the distribution
of the pointwise error for N = 80. The figure confirms that the behavior of the local error
in the proximity of the shock wave is dominated by the order of the WENO algorithm. Far
from the shock, small oscillations are discernible. The error is larger for the W 5 scheme
upstream of the shock than for the W 7 scheme, whereas the opposite holds downstream of
the shock. The hybrid schemes H5 and H7 exhibit a similar behavior far from the shock
and apparently do not suffer from spurious oscillation generated at the interface between
the compact and the shock-capturing scheme, as observed in Ref. [1] for the CULD scheme.
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FIG. 7. Numerical solution of Burgers equation at t = 2/�(N = 20). ——, Exact solution; �, H7;
�, H5; �, W 7; 
, W 5.

As a final check of the capabilities of the hybrid schemes, in Fig. 9 we report the variation of
the L1 norm error of the computed solution, as a function of the number of grid points. As
is done in Ref. [1], the error is computed considering only the points lying away from the
shock, i.e., excluding the region xsh − 0.1 < x < xsh + 0.1. Figure 9 shows that the error
on coarse grids is dominated by the treatment of the shock, and indeed the schemes W 5 and
H5, W 7 and H7 behave in a similar manner. However, on very fine meshes (N ≥ 320), the
error turns out to be mostly affected by the type of scheme employed in the smooth regions,
and indeed the hybrid schemes H5 and H7 exhibit the same error level, which is a factor
2 ÷ 3 lower than for the WENO schemes, and an overall N−5 scaling of the error.

5.2. Shock-Entropy Wave Interaction in 1D

The following test case is taken from Ref. [41] and has been studied by several other
authors (see, e.g., Refs. [1, 19]). The one-dimensional Euler equation are solved with the

FIG. 8. Pointwise error for Burgers equation at t = 2/�(N = 80). ——, H7; - - -, H5; – · – · –, W 7; - · - · -, W 5.



HYBRID COMPACT-WENO SCHEMES 101

FIG. 9. Convergence study for Burgers equation. �, H7; �, H5; �, W 7; 
, W 5.

initial conditions

v(x, 0) =
{

vL , x < −4,

vR, x ≥ −4,

where the initial left and right states are defined by the relations

vL = (
L , uL , pL) = (3.857143, 2.629369, 10.333333),

vR = (
R, u R, pR) = (1 + 0.2 sin(5x), 0, 1),

which reproduces the unsteady interaction of a M = 3 shock wave with a sine entropy wave
that carries a density fluctuation of amplitude 

 = 0.2. An analytical solution is available
in the literature for 

 � 1 [6, 32].

The numerical solution has been calculated in the interval x ∈ [−5 : 5], and integrated
forward in time up to t = 1.8. Zero time variation of the conservative variables has been
specified at the left and right boundaries, which is appropriate for the time interval under
interest. The time step has been set to a constant value


t = �
h

maxi=1,N (|ui | + ci )
,

with a Courant number � = 0.5. The switch parameter has been set to � = 0.8. This test
case is particularly severe because the solution includes smooth regions with a rich structure
consisting of receding acoustic waves (that steepen and give rise to shocklets) as well as
entropy waves propagating downstream of the shock. The computed density fields for
N = 200 are reported in Fig. 10, which is a rather marginal resolution. In the figure we also
report the “exact” solution which we have obtained by computing the same problem with
N = 1600. The figure demonstrates the superiority of the hybrid algorithms over the WENO
ones in reproducing the correct flow features downstream of the shock. In particular, the
W 5 algorithm exhibits a serious damping of the entropy waves, while the W 7 algorithm
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FIG. 10. Shock/entropy wave interaction: distribution of density for N = 200(� = 0.8). �, Computed solution;
——, “exact” solution.

shows poor results in the proximity of the interface between the acoustic and the entropy
waves. The H7 scheme produces the best results among the algorithms here discussed, and
in particular the amplitude of the entropy waves is predicted remarkably well. However,
we also note that the hybrid algorithms produce some oscillations in the proximity of the
shocklets, due to the relatively high value of � that has been chosen, such that the WENO
apparatus is not turned on there. It is important to point out that the accuracy of the shock-
capturing algorithm that is employed to treat discontinuities is of crucial importance for a
good performance of the hybrid algorithm. Indeed, the H7 algorithm performs better than
H5. At the same time, however, the use of a compact scheme away from the discontinuities
is also observed to be beneficial, and indeed the H5 algorithm does better than the W 5 and
H7 does better than W 7.

A comparison with the results reported by other authors [1, 19, 41] shows that the present
hybrid formulation is capable of providing more accurate results, at least on coarse grids.
In particular, a comparison with the results of Ref. [1] indicates that the present method
provides better resolution properties downstream of the shock, even though the hybrid
algorithm developed by those authors involves a pentadiagonal matrix inversion, rather
than a tridiagonal one. The reason might be the use of a WENO reconstruction across
discontinuous regions rather than a ENO one, but also the use of a fully conservative
formulation may play an important role in obtaining better resolution properties.

The L1 norm of the overall error (computed for −5 ≤ x ≤ 2.25, so that the shock is not
included) is reported in Fig. 11. The figure indicates that on coarse grids (i.e., N ≈ 200)
the H7 algorithm has a lower error than the other ones, which is consistent with its better
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FIG. 11. Shock/entropy wave interaction: distribution of the L1 error as a function of the number of points.
�, H7; �, H5; �, W 7; 
, W 5.

shock resolving property and the better resolution properties of the compact scheme over the
WENO ones. Note that indeed the entropy waves downstream of the shock are in this case
captured with n p ≈ 6 points per wavelength. However, on finer meshes, which resolve the
sine waves with many more points, the performance of WENO and hybrid schemes is similar.

For the purpose of assessing the effect of the switch parameter � and of the type of flux
splitting on the quality of the solution, we have performed additional calculations, whose
results are reported in Figs. 12 and 13. In Fig. 12 we report the density distribution obtained
with the scheme H7 for � = 0.4 and 0.2, which correspond to increasing the number of
nodes in the flow field which are treated with the WENO algorithm. The figure shows that, as
expected, the scheme becomes more and more dissipative, and its behavior becomes more
similar to a pure W 7 scheme. In particular, the peaks close to the interface between the
rarefaction and the entropy waves are smoothed out, while the oscillations at the shocklets
become less and less evident, thus indicating that the WENO scheme is now turned on
there. However, the results are still better than those reported for a hybrid compact-ENO
scheme [1]. The density distribution obtained with the H7 algorithm (with � = 0.8) using
the HDLF flux splitting is reported in Fig. 13. A comparison with Fig. 10 demontrates that
indeed this type of flux splitting is more dissipative than the LDLF one, even though it is
significantly less expensive to compute, with O(15%) savings in computation time.

5.3. Shock-Vorticity Wave Interaction in 2D

In the present example, which is also taken from Ref. [41], a vorticity wave is made to
interact with a M = 8 shock wave in a two-dimensional environment. The same test case
has been computed, for example, in Refs. [1, 19, 48]. A shock wave is initially located at
x = −1 and is moving into a gas whose state is defined by


 (x, y) = 1,

u(x, y) = −√
� sin � cos(kx cos � + ky sin �),

v(x, y) = √
� cos � cos(kx cos � + ky sin �),

p(x, y) = 1,
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FIG. 12. Shock/entropy wave interaction: distribution of density for N = 200 for the H7 scheme. (a) � = 0.4;
(b) � = 0.2. �, Computed solution; ——, “exact” solution.

FIG. 13. Shock/entropy wave interaction: distribution of density for N = 200 for the H7 scheme + HDLF
flux splitting formulation (� = 0.8). �, Computed solution; ——, “exact” solution.
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where � = 1.4 is the specific heat ratio, � = �/6 is the angle of the vorticity wave with
respect to the shock, and k = 2�. The initial state downstream of the shock is specified to
be uniform and related to the undisturbed upstream flow through the Rankine–Hugoniot
jump relations. The problem is solved in the spatial domain (x, y) ∈ [−1.5, 1.5] × [−1, 1]
and computed up to t = 0.2 on a uniformly spaced mesh whose spacing in the coordinate
directions is 
x, 
y. Periodic boundary conditions are enforced in the y-direction, while
zero time variation is specified at the inflow and the outflow. The time step is kept constant
and computed according to


t = �

tx 
ty


tx + 
ty
,

where


tx = 
x

maxi=1,Nx ; j=1,Ny (|ui, j | + ci, j )
,


ty = 
y

maxi=1,Nx ; j=1,Ny (|vi, j | + ci, j )
,

and with a Courant number � = 0.5. The switch parameter of the hybrid algorithm has
been set to a conservative value � = 0.8 to avoid oscillations to appear past the strong
shock.

The results of the study are reported in Figs. 14–16. Two different grids have been
considered for the present study: a coarse one consisting of 96 × 64 nodes and a finer grid,
consisting of 192 × 128 nodes. For the purpose of comparing with an “exact” solution, we
have also computed the same test case with the W 7 scheme on a much finer grid, consisting
of 960 × 640 nodes. In Fig. 14 we report the spatial distribution of the computed density
field on the two grids here considered. The “exact” solution consists of a set of acoustic
waves moving to the left with respect to the shock wave and a set of vorticity and entropy
waves moving more slowly; the two regions are separated by a rather sharp interface, which
is clearly observed in the figure at x ≈ 0.55. The figure shows that all the schemes correctly
capture the salient features of the flow; in particular, the acoustic waves, which are associated
to longer wavelengths, are well captured even on the coarse mesh, while differences among
the various algorithms are discernible in the region close to the shock. In order to analyze the
differences in a greater detail, in Fig. 15 we report a close-up (in the proximity of the shock)
of the sections of the density field taken at y = 0. The figure indicates significant differences
in the computed solution on the coarser mesh. It is seen that the W 5 scheme significantly
damps all the extrema, and in particular the entropy waves are very poorly reproduced. A
somewhat better behavior of the H7 hybrid scheme over the W 7 algorithm is also observed,
at least far from the shock, with a more faithful reproduction of the behavior of the solution
close to the acoustic-entropy transition zone. For completeness, in Fig. 16 we also report the
computed vorticity field, which also demonstrates that the H7 algorithm has a very similar
behavior to the W 7 one, although at a much lower computational cost. Finally, we observe
that this test is not particularly challenging with respect to the resolution properties of a
numerical scheme, as relatively long wavelength disturbances are involved, and WENO and
hybrid schemes perform similarly.
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FIG. 14. Shock/vorticity wave interaction: density field. (a) Nx = 96, Ny = 64; (b) Nx = 192, Ny = 128. Thirty
contour levels from 0.99 to 6.16.

5.4. Shock-Turbulence Interaction in 3D

As a final test of the capabilities of the different numerical schemes here discussed, we
present the application to a case of shock-turbulence interaction in three space dimensions.
Numerical simulations and analyses of the interaction of a field of isotropic turbulence
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FIG. 15. Shock/vorticity wave interaction: distribution of density along the y = 0 section. �, Computed
solution; ——, “exact” solution. (a) Nx = 96, Ny = 64; (b) Nx = 192, Ny = 128.
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FIG. 16. Shock/vorticity wave interaction: vorticity field. (a) Nx = 96, Ny = 64; (b) Nx = 192, Ny = 128.
Sixteen contour levels from −100 to 100.

interacting with a planar shock wave have been reported in detail in Refs. [26, 27]. Those
authors have considered direct numerical simulations of shock-turbulence interaction and
have employed a numerical algorithm based on the use of a sixth-order Padé compact sheme
in the smooth regions and of a ENO shock-capturing scheme in the proximity of the shock,



HYBRID COMPACT-WENO SCHEMES 109

whose location is known a priori. In the present study we consider a test case that has been
reported in Ref. [27], consisting in a M = 2 shock interacting with a field of compressible
isotropic turbulence whose characteristic Mach number is Mt = 0.108, and whose energy
spectrum is given by

E(k) ∝ (k/k0)
4 exp[−2(k/k0)

2], (42)

where k is the wavenumber in Fourier space, and k0 is the wavenumber corresponding
to the most energetic mode (which is set to k0 = 4 in the simulations here reported). The
inflow conditions have been generated by prescribing an isotropic solenoidal velocity field
with energy spectrum given by Eq. [42], and zero fluctuations for density and pressure;
on the other hand, Lee et al. [27] employ a more realistic inflow condition using data from
a temporally decaying turbulence simulation. Also note that in order to isolate the effect of
the discretization of the convective part of the Navier–Stokes equations on the dynamics of
turbulence, we have performed the simulations at zero molecular viscosity, which precludes
a quantitative comparison with the results of Ref. [27], which is not our purpose, however.
The computational domain is defined by (x, y, z) ∈ [−2�, 2�] × [0, 2�] × [0, 2�], and
the shock is located at x = 0. Periodic boundary conditions are enforced at the y- and z-
boundaries, while the locally nonreflecting boundary conditions of Thompson type [34, 43]
are implemented at the subsonic outflow boundary, augmented with a buffer zone treatment
which is used to gradually drive the flow to the mean conditions downstream of the shock
wave. For this purpose the computational mesh (which is uniformly spaced in the region
of the computational domain of physical interest) is progressively stretched toward the
outflow boundary, and approximately 20% of the grid nodes are put in the buffer region.
Damping terms have been added to the right-hand side of the governing equations in the
form �(v − vtarget), where vtarget is the vector of conservative variables for the undisturbed
state downstream of the shock. The damping parameter � smoothly varies from zero at
x = 2� to unity at the right end of the buffer zone. The combination of grid stretching and
the use of driving terms has been shown to be a very efficient way to prevent any spurious
wave from reflecting from the outflow [10, 13]. No clustering of grid nodes around the
shock waves has been attempted, as was done in Ref. [27]. In particular, two grids have
been considered in the study: a finer one, consisting of 160 × 64 × 64 nodes, and a coarser
one, consisting of 80 × 32 × 32 nodes. The time step for the Runge–Kutta is held constant
throughout the calculation, and the Courant number has been set to � = 1. The computation
has been advanced up to a large time t = 64, after which all the relevant turbulence statistical
properties achieved time independence.

For the present test case it is not obviously possible to compare to an “exact” solution,
since for the Euler equation an infinite cascade to smaller and smaller scales is expected as
the grid is refined, which is only limited by the numerical viscosity of the numerical scheme
(see, for example, Ref. [37]). However, on the basis of what has been presented so far, the
most reliable solution is expected to be the one obtained with the H7 scheme of the fine
grid, which is consistent with the indications of the results presented in Figs. 17–21.

The interaction of turbulence with a shock wave generates vortical, entropy, and acoustic
disturbances downstream of the shock [7, 35]. We point out that since the turbulence is
stationary and homogeneous in the cross-stream directions (y and z) all the statistical data
have been obtained by sampling the solution at discrete time intervals and then performing
time and space averages in the homogeneity directions. The evolution of the computed
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FIG. 17. Shock/turbulence interaction: rms density fluctuations. (a) Nx = 80, Ny = 32, Nz = 32; (b) Nx = 160,

Ny = 64, Nz = 64. ——, H7; – – –, H5; - - -, W 7; · · · · ·, W 5.

rms density and pressure fluctuations is reported in Figs. 17 and 18, respectively. Both rms
pressure and density start from a zero value at the inflow to reach a nearly constant value
after turbulence has rearranged before hitting the shock. After the interaction the levels of
rms density and pressure fluctuations are enhanced, consistent with the prediction of linear
analyses [6, 32, 35]. After a transition zone, where the flow is dominated by the so-called
evenascent waves, the statistical quantities tend to settle down to a nearly constant state and
exhibit a return to isotropy [27]. These features are reproduced by all the simulations here
reported. However, the schemes W 5 and W 7 do exhibit a more dissipative behavior even
upstream of the shock (which is more evident on the coarse mesh). The flow downstream
of the shock is very sensitive to the numerics. Indeed, the plateau levels predicted by the
weighted ENO schemes are considerably lower than those predicted by the corresponding
hybrid schemes. The latter schemes provide more reliable results, as confirmed by the anal-
yses of the figures, which indeed show that nearly grid-independent results are obtained
for the H7 algorithm and to a certain extent also for the H5 algorithm. This is particularly
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FIG. 18. Shock/turbulence interaction: rms pressure fluctuations. (a) Nx = 80, Ny = 32, Nz = 32; (b) Nx =
160, Ny = 64, Nz = 64. ——, H7; – – –, H5; - - -, W 7; · · · · ·, W 5.

important, as it has been observed that the thermodynamic quantities are particularly sen-
sitive to the grid resolution when using shock-capturing schemes [3, 27], mainly because
of the spurious entropy fluctuations generated downstream of a slowly moving shock.

A better insight into the dynamics of the interaction is obtained by looking at the one-
dimensional energy spectra [27]. The one-dimensional energy spectrum Ei (k j ) is defined
as the spectral energy density of u′

i with respect to the wavenumber in the x j direction k j

and satisfies

u′2
i =

∫ ∞

0
Ei (k j ) dk j .

Since the flow is homogeneous in the y- and z-directions, we have only considered the
spectral densities with respect to those coordinate directions; at the same time, since the
turbulence is isotropic upstream of the shock and axisymmetric downstream of the shock, it
is sufficient to consider only the two independent spectra (E2(k2) and E3(k2), for example).
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FIG. 19. Shock/turbulence interaction: evolution of one-dimensional spectra, as computed with the H7 scheme
on the Nx = 160, Ny = 64, Nz = 64 grid. ——, x = 6; - - -, x = −1. �, E2(k2); �, E3(k2).

The computed evolution of the one-dimensional spectra is shown in Fig. 19, where we report
the computed spectra (with the H7 algorithm on the fine grid) at two locations, the first one
immediately upstream of the shock, and the second one toward the end of the well-resolved
region. The figure shows that turbulence is mostly amplified at the small wavenumbers,
consistently with what observed in Ref. [27], while the large scales are almost unaffected
by the interaction.

It is interesting to study how those spectra are affected by the discretization scheme. For
this purpose in Figs. 20 and 21 we report the computed one-dimensional spectra upstream
and downstream of the shock, respectively. Figure 20 shows that the upstream spectrum is
relatively unaffected by the numerics on the fine grid, while differences are observable on
the coarse grid, where the weighted ENO schemes prove to be more dissipative. It is also
interesting to observe, however, that the hybrid schemes exhibit lower energy levels at the
smallest scales (i.e., at the right end of the spectrum). This is due to the peculiar form of
the transfer function for the compact upwind scheme, as Fig. 1 clearly demonstrates. The
effect of the use of a dissipative scheme is then to provide a numerical dissipation which
is most active at the smallest scales, which lie close to the highest resolvable wavenumber.
The differences are more evident in the spectra evaluated downstream of the shock, where
the intermediate and small scales are greatly enhanced on account of the interaction with
the shock wave. Figure 21 actually shows that the hybrid schemes H5 and H7 yield similar
results and exhibit a higherenergy content at the large and intermediate scales. It is also
interesting to observe that they exhibit a very different behavior at high wavenumbers:
indeed, while the weighted ENO schemes exhibit a cascade of energy up to n p = 2 (i.e., the
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FIG. 20. Shock/turbulence interaction: computed one-dimensional spectra upstream of the shock wave (at
x = −1). (a) Nx = 80, Ny = 32, Nz = 32; (b) Nx = 160, Ny = 64, Nz = 64. �, H7; �, H5; �, W 7; 
, W 5.

highest resolvable wavenumber) the hybrid schemes exhibit a cutoff in the energy spectrum
at high wavenumbers, which is observed to occur for waves resolved with n p = 3 points
per wavelength. This behavior is consistent with what has been previously observed for
the spectral transfer function and is similar to the energy distribution obtained from a low-
Reynolds-number direct numerical simulation, while the behavior of the weighted ENO
schemes is similar to the one obtained from a high-Reynolds-number large-eddy simulation.
An interesting analysis of the behavior of several shock-capturing schemes in the context
of numerical simulations of decaying compressible isotropic turbulence at zero molecular
viscosity has been presented in Ref. [15], where the approach is referred to as MILES
(monotone integrated large-eddy simulation).

In conclusion, while the hybrid schemes do not seem good candidates for a MILES ap-
proach, since they do not reproduce an inertial range up to the highest resolvable wavenum-
ber, they are good candidates for the direct numerical simulation of shock-turbulence inter-
action, since they exhibit a small amount of numerical viscosity at large and intermediate
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FIG. 21. Shock/turbulence interaction: computed one-dimensional spectra downstream of the shock wave (at
x = 6). (a) Nx = 80, Ny = 32, Nz = 32; (b) Nx = 160, Ny = 64, Nz = 64. �, H7; �, H5; �, W 7; 
, W 5.

scales and exhibit a clear cutoff frequency. On the basis of our results, it is expected that
good results for direct numerical simulation can be obtained provided the Kolmogorov scale
is resolved with at least three grid points.

6. CONCLUSIONS

In the present paper a hybrid scheme has been developed for the analysis of shock-
turbulence interaction problems. The scheme relies on a compact upwind scheme in con-
servation form to treat smooth regions of the flow field and on a WENO scheme to handle
discontinuities. An efficient formulation of the compact upwind scheme has permitted us to
obtain excellent resolution properties in the wavenumber space with a narrow stencil, which
only requires the inversion of a tridiagonal matrix. A simple switch between the compact
and the WENO scheme has been devised (on the basis of the one developed in Ref. [1])
which is based on the undivided differences of the density field. The proposed algorithm
has been shown to yield oscillation-free results when shock waves are present, and at the
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same time to improve the resolution properties of the algorithm, which is necessary when
rich structures are present in the smooth part of the flow field. The results indicate that
a conservative formulation of the compact building block guarantees a better resolution
of waves, and at the same time the use of a high-order WENO scheme is important for
obtaining good performance of the overall algorithm. A test performed on a realistic shock-
turbulence interaction problem indicates that the proposed scheme is a good candidate for
the direct numerical simulation of such flows.
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